The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations
نویسنده
چکیده
In this paper based on a system of Riccati equations with variable coefficients, we presented a new Riccati equation with variable coefficients expansion method and its algorithm, which are direct and more powerful than the tanh-function method, sine-cosine method, the generalized hyperbolic-function method and the generalized Riccat equation with constant coefficient expansion method to construct more new exact solutions of nonlinear differential equations in mathematical physics. A pair of generalized Hamiltonian equations is chosen to illustrate our algorithm such that more families of new exact solutions are obtained which contain soliton-like solution and periodic solutions. This algorithm can also be applied to other nonlinear differential equations.
منابع مشابه
Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملA Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)
Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...
متن کاملThe B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations
In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملThe extended homogeneous balance method and exact solutions of the Maccari system
The extended homogeneous balance method is used to construct exact traveling wave solutions of the Maccari system, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation. Many exact traveling wave solutions of the Maccari system equation are successfully obtained.
متن کامل